首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   108155篇
  免费   11256篇
  国内免费   5507篇
电工技术   7882篇
技术理论   11篇
综合类   8108篇
化学工业   16588篇
金属工艺   6213篇
机械仪表   7042篇
建筑科学   8920篇
矿业工程   3471篇
能源动力   3385篇
轻工业   6542篇
水利工程   2340篇
石油天然气   6256篇
武器工业   1129篇
无线电   12762篇
一般工业技术   12425篇
冶金工业   4600篇
原子能技术   1447篇
自动化技术   15797篇
  2024年   249篇
  2023年   1819篇
  2022年   3428篇
  2021年   4924篇
  2020年   3822篇
  2019年   3045篇
  2018年   3487篇
  2017年   3812篇
  2016年   3498篇
  2015年   4782篇
  2014年   5906篇
  2013年   6969篇
  2012年   7650篇
  2011年   8257篇
  2010年   7097篇
  2009年   6660篇
  2008年   6559篇
  2007年   6048篇
  2006年   5957篇
  2005年   4931篇
  2004年   3435篇
  2003年   3063篇
  2002年   3198篇
  2001年   2685篇
  2000年   2255篇
  1999年   2248篇
  1998年   1653篇
  1997年   1385篇
  1996年   1402篇
  1995年   1054篇
  1994年   904篇
  1993年   682篇
  1992年   505篇
  1991年   339篇
  1990年   274篇
  1989年   232篇
  1988年   226篇
  1987年   134篇
  1986年   85篇
  1985年   60篇
  1984年   35篇
  1983年   28篇
  1982年   36篇
  1981年   24篇
  1980年   20篇
  1979年   17篇
  1976年   10篇
  1971年   3篇
  1959年   9篇
  1951年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
21.
22.
23.
Radioligand therapy targeting the prostate-specific membrane antigen (PSMA) is rapidly evolving as a promising treatment for metastatic castration-resistant prostate cancer. The PSMA-targeting ligand p-SCN-Bn-TCMC-PSMA (NG001) labelled with 212Pb efficiently targets PSMA-positive cells in vitro and in vivo. The aim of this preclinical study was to evaluate the therapeutic potential of 212Pb-NG001 in multicellular tumour spheroid and mouse models of prostate cancer. The cytotoxic effect of 212Pb-NG001 was tested in human prostate C4-2 spheroids. Biodistribution at various time points and therapeutic effects of different activities of the radioligand were investigated in male athymic nude mice bearing C4-2 tumours, while long-term toxicity was studied in immunocompetent BALB/c mice. The radioligand induced a selective cytotoxic effect in spheroids at activity concentrations of 3–10 kBq/mL. In mice, the radioligand accumulated rapidly in tumours and was retained over 24 h, while it rapidly cleared from nontargeted tissues. Treatment with 0.25, 0.30 or 0.40 MBq of 212Pb-NG001 significantly inhibited tumour growth and improved median survival with therapeutic indexes of 1.5, 2.3 and 2.7, respectively. In BALB/c mice, no signs of long-term radiation toxicity were observed at activities of 0.05 and 0.33 MBq. The obtained results warrant clinical studies to evaluate the biodistribution, therapeutic efficacy and toxicity of 212Pb-NG001.  相似文献   
24.
Corrosion and wear failures are bottlenecks for restricting applications and developments of Al-based functional materials. As a new lubrication technology, superhydrophobic preparation provides an effective way to settle Al alloy corrosion. The preparation methods of superhydrophobic Al alloys are mainly multistep strategies. In this study, superhydrophobic Al alloy, has been prepared by an efficient one-step electrochemical etching process. Meanwhile, its micromorphology has been observed by a scanning electron microscope. The wettability has been measured by video optical contact angle meter. The corrosion behavior has been tested by electrochemical workstation, and wear performance has been characterized by friction tester. The results show that the micro-nanoterraced concave–convex structure has been fabricated and an as-prepared surface exhibits excellent superhydrophobic behavior. Further electrochemical and tribological tests show that corrosion resistance and wear resistance have also been significantly improved. This study provides a new method to prepare wear-resistant and corrosion-resistant Al alloy for widening applications of multifunctional Al-based engineering materials.  相似文献   
25.
Phosphors-converted LEDs (pc-LEDs) are excellent artificial light sources for indoor plant cultivation, in which the far-red-emitting component (700−780 nm) plays an important role in regulating the photomorphogenesis of plants. Accordingly, highly efficient and thermally stable far-red-emitting phosphors are indispensable for developing high-performance plant cultivation pc-LEDs. Herein, far-red-emitting YAl3(BO3)4:Cr3+ (YAB:Cr3+) phosphors were synthesized by solid-state reaction, and their photoluminescence characteristics, thermal quenching, quantum yield (QY), and application in pc-LEDs were systematically investigated. The YAB:Cr3+ phosphor has an intense broadband absorption to the blue light, simultaneously exhibiting the sharp-line 2E emission and the broadband T2 emission of Cr3+ with a QY of ~86.7%. The far-red broadband emissions of YAB:Cr3+ centered at ~735 nm show a high resemblance to the active-state (PFR) absorption of plant phytochrome. Moreover, the YAB:Cr3+ phosphor shows the thermally enhanced luminescence at temperatures of 303−393 K and the near-zero thermal quenching up to 423 K. The anomalous thermal enhancement is attributed to the temperature-dependent repopulation between 2E and T2 states. Finally, a pc-LED device was fabricated with the YAB:Cr3+ phosphor and blue chip, exhibiting the light out power of ~50.6 mW and energy conversion efficiency of ~17.4% at 100 mA drive current, respectively. The exceptional PL features including suitable excitation/emission wavelengths, suppressed thermal quenching and high QY make YAB:Cr3+ phosphors very promising for applications in plant growth pc-LEDs.  相似文献   
26.
Radicals are closely related to human life and health and have been widely used in biology, chemistry, functional materials, etc. However, the high reactivity, disorder, and short half-lives limit their wide applications. Therefore, it remains a great challenge to prepare stable and ordered radicals. Herein, radicals are prepared with protective umbrellas (diethylmethyleneamine, DEMA) that are integrated on the surface of 2D layered materials to isolate water and oxygen and enhance the stability of radicals. Taking 2D black phosphorus (BP) as an example: triethylamine reacts with dichloromethane to form quaternary ammonium salts with further Hoffmann elimination to produce DEMA radicals that could react with one electron of a lone pair electrons in P on the surface of BP to produce P radicals, which shows a prolonged half-life of 21 days at room temperature. First-principle calculations and electron paramagnetic resonance fitting confirm that the steric hindrance constructed by dense DEMA passivation layer acts as a protective umbrella and the 2D coupling of P radicals and other P atoms in 2D BP plane to enhance the stability and strong superexchange interaction of P radicals. Furthermore, it is a general strategy to produce stable radicals integrated on the 2D plane.  相似文献   
27.
28.
Flexible scintillating fiber plays an important role in X-ray radiation monitoring and high-resolution medical imaging, while construction of scintillating fiber derived from the commercial material system meet with limited success. Here, we report the design and successful fabrication of the Ce-activated lutetium aluminum silicate glass, nanostructured glass, and fiber, and explore their scintillating properties. The scintillating glass with optimized composition and optical properties is determined. The crystallization behavior of lutetium aluminum silicate glass is studied and the nanostructured glass embedded with orthorhombic Lu2Si2O7 phase is successfully constructed for the first time. Importantly, the crystalline layer thickness of the nanostructured glass can be finely tuned and ~172.89% enhancement in the scintillating performance can be achieved. Furthermore, the fiber with large sized core is fabricated and its radiation response properties are tested. The results show that it exhibits high sensitivity and its scintillating emission is lineally dependent on the X-ray power, indicating the potential application for radiation detection.  相似文献   
29.
Due to the demand of miniaturization and integration for ceramic capacitors in electronic components market, TiO2-based ceramics with colossal permittivity has become a research hotspot in recent years. In this work, we report that Ag+/Nb5+ co-doped (Ag1/4Nb3/4)xTi1−xO2 (ANTOx) ceramics with colossal permittivity over a wide frequency and temperature range were successfully prepared by a traditional solid–state method. Notably, compositions of ANTO0.005 and ANTO0.01 respectively exhibit both low dielectric loss (0.040 and 0.050 at 1 kHz), high dielectric permittivity (9.2 × 103 and 1.6 × 104 at 1 kHz), and good thermal stability, which satisfy the requirements for the temperature range of application of X9R and X8R ceramic capacitors, respectively. The origin of the dielectric behavior was attributed to five dielectric relaxation phenomena, i.e., localized carriers' hopping, electron–pinned defect–dipoles, interfacial polarization, and oxygen vacancies ionization and diffusion, as suggested by dielectric temperature spectra and valence state analysis via XPS; wherein, electron-pinned defect–dipoles and internal barrier layer capacitance are believed to be the main causes for the giant dielectric permittivity in ANTOx ceramics.  相似文献   
30.
Lithium (Li) metal, as an appealing candidate for the next-generation of high-energy-density batteries, is plagued by its safety issue mainly caused by uncontrolled dendrite growth and infinite volume expansion. Developing new materials that can improve the performance of Li-metal anode is one of the urgent tasks. Herein, a new MXene derivative containing pure rutile TiO2 and N-doped carbon prepared by heat-treating MXene under a mixing gas, exhibiting high chemical activity in molten Li, is reported. The lithiation MXene derivative with a hybrid of LiTiO2-Li3N-C and Li offers outstanding electrochemical properties. The symmetrical cell assembling lithiation MXene derivative hybrid anode exhibits an ultra-long cycle lifespan of 2000 h with an overpotential of ≈30 mV at 1 mA cm−2, which overwhelms Li-based anodes reported so far. Additionally, long-term operations of 34, 350, and 500 h at 10 mA cm−2 can be achieved in symmetrical cells at temperatures of −10, 25, and 50 °C, respectively. Both experimental tests and density functional theory calculations confirm that the LiTiO2-Li3N-C skeleton serves as a promising host for Li infusion by alleviating volume variation. Simultaneously, the superlithiophilic interphase of Li3N guides Li deposition along the LiTiO2-Li3N-C skeleton to avoid dendrite growth.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号